When Brain Training Works – Points of Controversy, by Betsy Hill and Roger Stark

August 23, 2016

Pre-publication publicity for a new book on the value of brain training claims that there are 5 conditions that make it effective.  While it surfaces some important considerations, it is likely to disappoint anyone who adheres strictly to the five conditions.

Here’s where the advice falls short:

  1. It must engage and exercise a core brain-based capacity or neural circuit identified to be relevant to real-life outcomes.

Response:  First of all, if there is a brain-based capacity or neural circuit that hasn’t been identified as relevant to real-life outcomes, then it probably doesn’t exist.  The purpose of our brain is survival, so all mental capacities are arguably relevant to real-life outcomes.  But more importantly, it is insufficient to say that training must target a mental process shown in research to be relevant to real-life performance.  The training should actually be able to demonstrate improvement in whatever that real-life performance is.   This is actually where much brain training falls down.  It’s not that the training doesn’t connect the exercise to a specific neural process, but that it can’t demonstrate actual change in real life application.

2.  It must target a performance bottleneck.

Response: The issue here is the model of brain functioning that underlies the statement.  A bottleneck is relevant for a linear process.  If step 2 of 10 in a manufacturing plant is slow, then that produces a “bottleneck.”  Speeding up step 2 will speed up the whole manufacturing process.  But our brains are not manufacturing processes.  Rather, they are complex systems with multiple processes occurring simultaneously (and hopefully in coordination).  In fact, recent research supports the idea that multiple mental processes are involved in just about everything we do and they have to work together.  While there is some truth to targeting weaker functions, it is at least as true that brain training, to be effective, is about integrating multiple systems.

3.  It requires a minimum “dose” of 15 hours total per targeted brain function performed over 8 weeks or less.

Response:  It’s refreshing, actually, to see a consensus emerging that a few minutes or hours of training here and there won’t do much for cognitive fitness.  But there is a fundamental flaw in the implication that each brain function must be trained independently.  If that were the case, then a training regimen of 150 hours would be required to address 10 targeted brain functions.  In our research, we have found that a dramatic impact on multiple brain functions is achieved in 35 to 50 hours of training multiple cognitive skill areas in an integrated fashion (using BrainWare SAFARI 3 to 5 times per week, in 30-45 minutes sessions over about 12 weeks).  We can agree that noticeable differences start to appear at the 6-8 week mark, but much more can be accomplished than this description of the book suggests.

4.  Training must adapt to performance, require effortful attention, and increase in difficulty.

Response:  This is all true, but it neglects what we know about what actually motivates effortful attention and persistence in training.  Parents and clinicians we talk to tell us, over and over, that most other brain training programs they have experienced are BORING.  Even when they are adaptive, increase in difficulty, and require focus (effortful attention).  Human beings don’t expend effortful attention when things are not engaging.  Students don’t care how much you know until they know how much you care.  The design of the training program needs to be motivational, engaging and reward, not just demand, persistence.

5.  Continued practice is required for continued benefits.

Response:  This condition suggests that one needs to continue training essentially forever.  First, we want to say, “Wrong,” but then we want to relent and acknowledge that, “It depends.”  It also requires that we consider what “practice” means.

When children complete a brain training program (which we think is better termed cognitive training), they bring their improved attention skills, working memory, or visual-spatial processing to an educational environment that, in most cases, continues to put demands on those very cognitive skills.  In other words, they are using and practicing those enhanced cognitive skills every day.

If you are an adult in the workplace, the same would be true, by and large.  You are in an environment where you “practice” your improved skills constantly.  After all, if they haven’t transferred to real life, what’s the point?  If your goal, as an adult, is not to perform better, but to be a “high functioning couch potato,” then that is another story altogether.

One situation where continued benefits may require ongoing training is for those who want to build cognitive reserve and/or mitigate the effects of the declining demands of everyday life as they age.  For many individuals who are not as active as they used to be in intellectually demanding activities, ongoing training makes sense.

The idea behind brain training is that getting skills to the level of automaticity so that they are used in real life, means that real life becomes the practice.  While continued training may be useful for some, the better the training, the better the transfer, the better the individual applies their stronger cognitive functions in everyday life, the more challenges they take on, the more problems they solve … and the less need they will have for ongoing training.

We welcome the opportunity to explore the fascinating topic of brain training – and everything we know and don’t know – with you.  Please comment or feel free to email us at bhill@mybrainware.com or rstark@mybrainware.com.


Neuroscience and the U.S. Education System, by Betsy Hill

February 16, 2015

Education informed by neuroscience can give new and real meaning to our desire as a nation to leave no child behind.  Moreover, it may offer the only true opportunity for the disruptive change that education needs for current and future generations to be educated to face the challenges ahead.    It can do this in at least three specific ways:

1.  By improving learning at the level of basic cognitive functioning, changing students’ capacity to learn.

Better teaching, better facilities, better technology, etc., are important, but those are external factors.  What about the internal capabilities and stumbling blocks that each student brings to the learning experience?  Neuroscience shows us how to impact the efficiency and effectiveness of the learning process by improving each individual’s underlying mental processing – that is, by changing the experience of learning from the inside out.

One of the things we know from neuroscience is that the brain is plastic, which means it constantly changes, building new pathways and connections.  We also know that every brain is unique – formed and constantly evolving through our experiences.  Experience is not just about facts and declarative knowledge, but about how the brain does what it does.  What one student can do or understand easily escapes another.  Neuroscience helps explain why that is and what to do about it.  Science no longer accepts that intelligence is fixed.  Rather, it continues to document the critical role of experience in developing intellectual ability.

Despite the fact that underlying cognitive skills are essential to all learning, they are not generally taught in schools.  Schools assume that every student brings the necessary cognitive skills to the learning process, or as much of those skills as they will ever have.   The fact that cognitive skills are not explicitly taught in schools does not mean that they cannot be taught, however.  For over half a century, techniques to develop basic cognitive skills have been known and used in various clinical therapies.  Today, these techniques can be delivered via computer-based programs effectively and on a much broader scale, making the delivery of cognitive training programs viable in a classroom setting to all students.  The intellectual gains delivered by a program like BrainWare SAFARI are substantial.

2.  By making schools and teaching more brain-friendly.

Here neuroscience can help us understand and change our practices in a number of ways, including:

  • Better presenting information so that students’ immediate sensory memory lets the right information into the brain.
  • Taking advantage of the relationship between working memory, where we consciously process what we learn, and long-term memory storage.
  • Integrating multiple senses and media to enhance learning, since the brain processes information in multiple ways simultaneously.
  • Incorporating emotion and mnemonics to aid in long-term memory consolidation
  • Making curriculum meaningful, since meaning and relating new information to old are what enable new information to be stored.
  • Understanding the different ways declarative memory and procedural memory are stored and used (retrieved).

The reason to engage students with more meaningful and relevant curriculum and through problems, projects and simulations is not simply because that makes learning more fun, but because it is, in fact, student engagement that results in learning.  And higher levels of engagement result in more and better learning and the ability to apply what is learned in the real world.

3. By helping students develop so-called 21st century skills, the keys to college and career-readiness.

Developing problem-solving ability, communication skills and creativity is fundamentally about developing the brain and its processing ability in each individual student.  These are skills that cannot be taught through pure direct instruction.  One wouldn’t, for example, assume that explaining the principles of pole-vaulting would suddenly imbue a student with the ability to coordinate muscles, brain, strength and balance to clear a bar.  The same holds true for critical thinking and other prized 21st century skills.

While there is broad consensus regarding the importance of these skills, there is much uncertainty about how to help students develop them and over how to measure them.  However, as we move away from measuring content absorbed and toward measuring the effectiveness of mental processes, neuroscience is likely to be indispensable.

Are other ways that you can see neuroscience helping improve the U.S. education system?  Let us hear what you think!


Cognitive Skills Development in an Accelerated Curriculum – by Betsy Hill

April 10, 2014

Much of our work has dealt with helping struggling students — those who are behind or have identified cognitive deficits — but it is important to remember that very bright students can also benefit from developing their cognitive skills and executive functions.  Here’s a story that explains what this can look like:

Dr. Sara Fraser, a clinical psychologist and Director of Students Services at Curtis School in Los Angeles, California, had been following the literature on executive functions for some time before she encountered BrainWare SAFARI at a Leaning and the Brain Conference in 2012. What she had seen up until that point was not all that encouraging – training on working memory that didn’t seem to transfer beyond short-term memory. It was also labor-intensive and would require a pull-out approach in their school setting.

What appealed to Dr. Fraser about BrainWare SAFARI was that its video-game format would appeal to their students, that it was supported by research showing that the breadth of cognitive skills developed meant that they could expect to see transfer to academic tasks, and that it could be implemented by teachers within the classroom.

The next step was to bring some teachers into the process – enter Joan Cashel and Susie Sobul, two of Curtis School’s third-grade teachers. Following a webinar demonstration, both teachers used BrainWare SAFARI themselves over the summer, with Joan finishing all but a few levels (we’re impressed!). An implementation webinar in the fall prepared them to kick things off with their students, which they did by reading Your Fantastic Elastic Brain and talking about brains as a learning muscle. The students heard that getting better at something means going for the sense of frustration that is inevitable when you’re moving up a learning curve.

Later, students would get the opportunity to learn that lesson at a deeper level. After building confidence as they passed the early, easiest levels of BrainWare, they would each find an area that was truly difficult for them. Joan found it fascinating to see some of her students easily complete levels she had struggled with and struggling with others.

Knowing that it was important that their students move around through the different games and taking to heart the admonition in their implementation webinar not to let students avoid the hardest games*, Susie and Joan had a timer running on their SmarBoard to help students switch games every ten minutes and came up with a chart that let the students plan and keep track of their own progress and. During each of their thrice-weekly sessions, students would pick one of the Key 5, and then ensure that they rotated through all the other games before repeating. The students used the program over 14 weeks, completing 30 or more sessions, the kind of usage that has been shown to drive substantial growth in cognitive skills.

A second cohort of students is using BrainWare SAFARI during the second half of the year. While the school won’t see the data on impact on student’s cognitive and academic skills until the end of the school year, a couple of things already apparent. First, the students started talking with each other outside of class … “How far did you get?” “Isn’t it fun?” The program became a real conversation piece. The other observation relates to the fact that the Curtis School offers an accelerated curriculum and serves high-level learners. As Dr. Fraser explains, many of those students haven’t experienced much in the way of frustration by the time they get to third grade. Giving students the experience of something where everyone gets challenged and learns to understand and tolerate frustration as a part of learning, has been, in her words, “incredibly helpful.”

Congratulations to all the third grade students at Curtis School for working hard at BrainWare SAFARI (and it’s ok if you think its fun!), and for learning that vital lesson – that challenge and frustration are essential in learning, and that persistence is key to accomplishing their goals.


What are Cognitve Skills? — by Betsy Hill

May 31, 2013

We hear the term “cognitive skills” more frequently these days as we all become more aware that our brains perform a variety of functions critical to helping us navigate school, work, personal relationships … in fact, everything we do.  How can we start to understand what these skills are and how they relate to how successfully we interact with our world?  Here are some basics:

Cognitive Skills…are “thinking” or mental processing skills.  They allow us to take in, process, understand and apply information. Some of the important cognitive skills for learning include:

  • Attention skills.  Attention refers, in part, to the “executive control” function of our minds, for instance, the ability to focus on one input without being distracted, as well as the ability to pay attention to two activities at the same time, such as taking notes while listening to the teacher.  Good attention skills also enable us to move from one activity to another with ease and to focus on the most important information with which we are presented, for instance, to identify the key clues in a math story problem.
  • Visual/spatial processing skills.  These functions include the various skills related to processing and making sense of visual inputs.  Examples include the ability to interpret the concepts of “left” and “right,” to process a volume of visual information at a glance, and to get meaning from information received sequentially – all critical for reading.  Strong visual processing skills enable us to recognize patterns, such as in a science experiment or in analyzing a set of historical facts, and to distinguish specific features or forms from a distracting background, such as identifying a bird in a tree.
  • Auditory processing skills.  Auditory skills are similar to visual processing skills, but deal with information that is heard. These skills include the ability to distinguish differences in sounds, such as the inflection in the voice for a question versus an exclamation, as well as the ability to identify the most important sounds, just as the conductor’s tapping his baton signals the musicians to cease warming up and prepare to perform.  Good auditory processing skills allow us to learn from what we hear and follow a series of directions.
  • Sensory integration skills.  These types of skills include the ability to combine sensory skills with motor activity, such as hand-eye coordination, rhythm and timing.  These skills directly relate to our ability to use our eyes and hands together efficiently, as in writing, drawing or typing.  They also enable our visual or auditory and our attention and memory systems to work effectively and smoothly together, such as keep a mental map in mind while we listen to a set of auditory instructions.
  • Memory skills.  Memory is one of the cognitive skill areas that seems the most familiar, but it covers a spectrum of skills that may not always come to mind when we use the word.  These include the ability to manage information and retain it for different lengths of time.  Long-term memory refers to our abilities to permanently store information and retrieve it when needed, such as math facts, locker combinations or grammar rules.  A different type of long-term memory allows us to perform procedures automatically, like walking, driving a car or playing a familiar piano piece.  Working memory is the ability to hold information in the mind while performing a mental operation, such as remembering the alphabet while alphabetizing spelling words.  Short-term memory is nonconscious memory where the brain decides what information to discard or what to retain in working memory, within 1/1000 of a second.  Sequential memory refers to the ability to recall a sequence of information, in order, such as remembering the historical series of events leading up to the Revolutionary War or what happened at the beginning, the middle and the end of a story.  Memory skills also allow us to remember the relationships between bits of information and keep them straight, such as learning a foreign language or solving an algebra problem.  Memory is the essence of learning, because information that is not remembered has not been learned.
  • Thinking skills involve abilities such as logic, reasoning, problem solving, conceptual thinking and the ability to make decisions quickly.  These skills, in which information is manipulated and applied, include such processes as planning, for example, how to tackle a multi-part science experiment; concept development, such as deductive reasoning; and the ability to use thinking skills quickly to make correct decisions, such as in responding to questions on a test.

Research continues to make clear both just how important these skills are, but how we can develop them and build our capacity to learn.  One very effective tool for developing these skills is BrainWare Safari. How strong are your cognitive skills?


Thoughts on the Value of President Obama’s BRAIN Initiative – by The BrainWare SAFARI Team

April 13, 2013

The BRAIN Initiative announced recently by President Barack Obama has underscored the importance of better understanding brain-behavior relationships and it holds potential for deeper knowledge of the mechanisms involved in the development of the cognitive skills involved in learning and thinking.

President Barack Obama this week announced that his 2014 budget proposal will contain $100 million in funding for a research initiative with the acronym BRAIN (Brain Research through Advancing Innovative Neurotechnologies), a 10-year $3 billion initiative previewed in the President’s State of the Union Address.  The purpose of BRAIN is to develop technologies to expand our understanding of how brain cells (neurons) interact to produce thought and learning.

Here are some of our thoughts:

Betsy Hill, President & COO, BrainWare SAFARI:  The BRAIN initiative has been likened to the Human Genome mapping project, but there are some important differences.  The order of proteins in the human genome can be determined and will be the same the next time you look at it.  There is a basic sequence that applies to all of us.  The principle of neuroplasticity means that the organization of our brains – the neural networks that account for learning and thought – are unique and constantly changing.  Our brains literally construct themselves.  In fact, the creation and strengthening of neural networks is the definition of learning.  It is vital that we learn more about how the brain processes, uses, stores, and retrieves such enormous quantities of information.

Roger Stark, CEO, BrainWare SAFARI:  A key to technological exploration of brain-behavior relationships will likely be the use of tools and techniques that have already been developed to impact brain function and behaviors, such as attention, working memory, visual-spatial processing, auditory processing and the integration of cognitive functions.  BrainWare SAFARI cognitive skills development software is just such a tool and has been shown in research and clinical practice to develop brain processes that enable us to take in, store, retrieve and manipulate information, the very processes the BRAIN initiative is designed to explore.  The BRAIN initiative could help explain in a much more detailed way than is currently available to exactly how key cognitive processes involved in learning and memory are developed and modified, leading to even better approaches.

Dr. Sara Sawtelle, Director of Scientific Affairs, BrainWare SAFARI:  We know that the brain develops in interaction with our environment.  BrainWare Safari helps the brain interact with the environment (in this case a software program, in a video-game format) in a way that develops cognitive processes critical for learning and thinking.  This could be a valuable tool in helping researchers working in the BRAIN initiative to examine how the brain develops and uses these key processes.  We look forward to collaborating with researchers on this exciting initiative with so much promise for our entire society.

What are your thoughts about the President’s BRAIN initiative?


Scientists Can’t Find Specific Genes for IQ

October 8, 2012

Recent research has shown that, while intelligence is believed to be partly genetic, the specific genes that were thought to be linked to intelligence are not.  And, in fact, of all the genes that were examined, only one was actually associated with intelligence and the effect was very small.

While Science Daily characterizes this discovery as “surprising,” it shouldn’t be a surprise at all.  First, the growing body of research makes it clear that intelligence is modifiable — that it develops as the brain interacts with the environment.  And second, it is becoming increasingly clear that intelligence is not a single thing.  Some scientists continue to insist that there is one factor they call “g” that is overall intelligence, but other research is making it clear that intelligence is really many mental processes that operate independently and interactively.

Consider, for example, Howard Gardner’s multiple intelligences, or George McCloskey’s extensive list of executive functions, or the array of cognitive processes that are developed in BrainWare Safari.  Skills like Working Memory have been shown to be highly correlated with measures of intelligence.  Mental processes like Inhibition are associated with social and emotional intelligence.  And Visualization is connected with reading comprehension.  Those are just a few examples.  And we also know that those skills can be measured independently.  Yet they must all work together to produce actions, thoughts and decisions that are suited to one’s environment.

The role of the environment is key.  Intelligence is generally held to be intelligence because it allows us to adapt to our environment, to be flexible in how we interact with it (others and the physical world).  As the environment changes, the skills we need to draw on are different.  Some environments require the ability to sustain our attention; others to divide it.  Holding information in short-term memory is different from getting it stored in long-term memory.  Visual discrimination and auditory discrimination are different.  But all these skills play a role in our ability to be effective in interacting with our environment, and hence a role in intelligence.

Not only is this new research not surprising, it is entirely consistent with what other scientific disciplines, such as cognitive neuroscience are telling us about the brain and intelligence.


Working Memory Training That Lasts – by Dr. Sara Sawtelle

June 13, 2012

Recently the journal Developmental Psychology published a meta-analysis of research on the value of Working Memory Training. A meta-analysis is not original research but combines multiple studies and uses statistical adjustments to try to draw an overall conclusion from disparate studies. In this case, the authors concluded that there is little to no benefit of Working Memory Training.

The meta-analysis is interesting for what it includes and for what it doesn’t address. There are two particular aspects of the studies included in the meta-analysis that are important to understand.

First, the average number of training sessions in the studies was 12.  Most therapists (vision, speech and language, other educational specialists) will recognize that patients or clients may only just be beginning to show some changes within 12 sessions.  As the meta-analysis points out, programs that claim to change your memory (or other specific abilities) in “10 minutes a day” or “in 12 sessions” are unlikely to create lasting change that will transfer beyond the specific skill you practice in the training.  And, after all, we don’t want to just get better at remembering a bunch of numbers; we want to get better at remembering all kinds of other things.

Second, the studies included in the meta-analysis had to specifically (and narrowly) address working memory in order to meet the criteria for inclusion. In the programs used in the studies, players work through a few games that target the ability to hold more information, with the challenges becoming more and more difficult.  The games used in these studies had no purpose but exercising a specific aspect of working memory. While working memory is part of our capacity to learn and is needed in many everyday mental processes, it does not work in isolation from other functions like visual span, visual selective attention, auditory selective attention, sequential memory or a whole host of other processes.  Since working memory is the process of holding multiple other functions active while processing takes place, the integration with other functions is essential.  The programs in the studies included in the meta-analysis are too narrow to show transfer beyond short-term gains and into broader application because they develop only part of the mental processes needed.

As for what the meta-analysis did not include, we have to look at studies that didn’t meet the criteria for inclusion. For example, the review did not include any research on BrainWare Safari.  BrainWare Safari develops multiple cognitive skills, including working memory, in an integrated and holistic manner.  The recommended protocol for BrainWare Safari is 3 to 5 sessions per week for 10 to 12 weeks, yielding 30 to 60 sessions (far more than the 12 sessions averaged for the studies in the meta-analysis).  Published studies with BrainWare have shown both cognitive and academic improvement when used according to the recommended protocol.  Retention of the improvement and even further growth after completing the time in BrainWare has been shown as well.

The conclusion from this latest article should not be that working memory training doesn’t work, but that working memory training must be done right to create lasting and transferable change.