What Neuroscience Does and Doesn’t Contribute to Teaching and Learning, by Betsy Hill

October 5, 2016

It has become popular lately for neuroscience experts to disparage the efforts of educators to understand and apply what neuroscientists have been learning about the brain (as a recent article published by PBS does).  Sometimes they even seem to wonder why we would be interested.

  1. We’re interested because that is where learning happens.  Learning doesn’t happen in our big toes or left elbows.  It happens when neurons connect and form neural networks … in our brains.
  2. We’re interested because our brains develop in interaction with our environment. We don’t develop knowledge and skills that our environment doesn’t expose us to and convince us are important.  So, to the extent that we can find ways to make the environment we provide for our students more conducive to having learning take place, the more effective we can be – which is our job as professional educators.
  3. We are aware of the dangers of neuromyths, such as believing that some people are right-brained and some are left-brained. But telling a teacher that that belief is wrong is like telling a child that ice cream is not good for them.  When we have come to believe something (which we can also refer to as having a mental model) and behave accordingly, we need a replacement explanation and practice to change our behavior.  We should understand why that neuromyth became popular and what the consequences are.  That, too, would seem to be our job as professional educators.

Another complaint of what I have referred to in a previous blog as “neurosnobs” is that neuroscience isn’t anything new – that what we present as new and grounded in neuroscience is just what teachers already knew.  That is certainly true of great teachers.  And I find that great teachers are invariably very excited to learn something about why the things that they know work actually work.  But more importantly, it can help convince misguided teachers and administrators to change ineffective practices that are all too common and to adopt practices that are brain friendly.

It seems an odd position to me to suggest that educators “eschew neuroscience” rather than becoming better consumers of neuroscience research and understanding what does and doesn’t translate.    There are some wonderful resources for teachers that are careful to examine what neuroscience can and can’t contribute to teachers.  One such resource is the book Brain Matters, written by Dr. Patricia Wolfe.  When widely respected neuroscientists come to present to the annual gathering of those who have been trained by Dr. Wolfe, they invariably comment on how knowledgeable and competent the group is.

We have enough “we and they” in our world today.  There is too much good that can come from the solid application of neuroscience to teaching and learning to run away from it when we encounter a bump in the road.


When Brain Training Works – Points of Controversy, by Betsy Hill and Roger Stark

August 23, 2016

Pre-publication publicity for a new book on the value of brain training claims that there are 5 conditions that make it effective.  While it surfaces some important considerations, it is likely to disappoint anyone who adheres strictly to the five conditions.

Here’s where the advice falls short:

  1. It must engage and exercise a core brain-based capacity or neural circuit identified to be relevant to real-life outcomes.

Response:  First of all, if there is a brain-based capacity or neural circuit that hasn’t been identified as relevant to real-life outcomes, then it probably doesn’t exist.  The purpose of our brain is survival, so all mental capacities are arguably relevant to real-life outcomes.  But more importantly, it is insufficient to say that training must target a mental process shown in research to be relevant to real-life performance.  The training should actually be able to demonstrate improvement in whatever that real-life performance is.   This is actually where much brain training falls down.  It’s not that the training doesn’t connect the exercise to a specific neural process, but that it can’t demonstrate actual change in real life application.

2.  It must target a performance bottleneck.

Response: The issue here is the model of brain functioning that underlies the statement.  A bottleneck is relevant for a linear process.  If step 2 of 10 in a manufacturing plant is slow, then that produces a “bottleneck.”  Speeding up step 2 will speed up the whole manufacturing process.  But our brains are not manufacturing processes.  Rather, they are complex systems with multiple processes occurring simultaneously (and hopefully in coordination).  In fact, recent research supports the idea that multiple mental processes are involved in just about everything we do and they have to work together.  While there is some truth to targeting weaker functions, it is at least as true that brain training, to be effective, is about integrating multiple systems.

3.  It requires a minimum “dose” of 15 hours total per targeted brain function performed over 8 weeks or less.

Response:  It’s refreshing, actually, to see a consensus emerging that a few minutes or hours of training here and there won’t do much for cognitive fitness.  But there is a fundamental flaw in the implication that each brain function must be trained independently.  If that were the case, then a training regimen of 150 hours would be required to address 10 targeted brain functions.  In our research, we have found that a dramatic impact on multiple brain functions is achieved in 35 to 50 hours of training multiple cognitive skill areas in an integrated fashion (using BrainWare SAFARI 3 to 5 times per week, in 30-45 minutes sessions over about 12 weeks).  We can agree that noticeable differences start to appear at the 6-8 week mark, but much more can be accomplished than this description of the book suggests.

4.  Training must adapt to performance, require effortful attention, and increase in difficulty.

Response:  This is all true, but it neglects what we know about what actually motivates effortful attention and persistence in training.  Parents and clinicians we talk to tell us, over and over, that most other brain training programs they have experienced are BORING.  Even when they are adaptive, increase in difficulty, and require focus (effortful attention).  Human beings don’t expend effortful attention when things are not engaging.  Students don’t care how much you know until they know how much you care.  The design of the training program needs to be motivational, engaging and reward, not just demand, persistence.

5.  Continued practice is required for continued benefits.

Response:  This condition suggests that one needs to continue training essentially forever.  First, we want to say, “Wrong,” but then we want to relent and acknowledge that, “It depends.”  It also requires that we consider what “practice” means.

When children complete a brain training program (which we think is better termed cognitive training), they bring their improved attention skills, working memory, or visual-spatial processing to an educational environment that, in most cases, continues to put demands on those very cognitive skills.  In other words, they are using and practicing those enhanced cognitive skills every day.

If you are an adult in the workplace, the same would be true, by and large.  You are in an environment where you “practice” your improved skills constantly.  After all, if they haven’t transferred to real life, what’s the point?  If your goal, as an adult, is not to perform better, but to be a “high functioning couch potato,” then that is another story altogether.

One situation where continued benefits may require ongoing training is for those who want to build cognitive reserve and/or mitigate the effects of the declining demands of everyday life as they age.  For many individuals who are not as active as they used to be in intellectually demanding activities, ongoing training makes sense.

The idea behind brain training is that getting skills to the level of automaticity so that they are used in real life, means that real life becomes the practice.  While continued training may be useful for some, the better the training, the better the transfer, the better the individual applies their stronger cognitive functions in everyday life, the more challenges they take on, the more problems they solve … and the less need they will have for ongoing training.

We welcome the opportunity to explore the fascinating topic of brain training – and everything we know and don’t know – with you.  Please comment or feel free to email us at bhill@mybrainware.com or rstark@mybrainware.com.


The Mystery of Reading Comprehension, by Betsy Hill

June 18, 2016

Many students can read a passage,but afterwards are unable to tell you what they read.  Or perhaps they can answer simple factual questions (regurgitate), but it really has no meaning for them and will be forgotten the next day.

How students make the leap from decoding to understanding is something that has challenged teachers since the very beginning of reading and writing (I don’t really have a reference for comprehension problems with the Dead Sea Scrolls, but I suspect that I’m not far off the truth).

And what is reading comprehension, anyway?

The way our minds comprehend what we hear or read is to connect what we are hearing or reading to knowledge and information we already know.  Regurgitating is not comprehending.  Regurgitation only involves short-term memory.  Our brains are designed to discard what is held in short-term memory if we haven’t found a way to make it meaningful.  So, of course, we can “read” but still not have understood a darn thing.

Comprehending involves making meaning, by visualizing and applying the information from the text being read, relating ideas to what is already known, and holding ideas in mind while we think about them.  But most reading instruction doesn’t address “visualizing”, or “holding ideas in mind.”  In fact, those mental processes are only two, although a very important two, of the cognitive skills (or mental processes) that must be working efficiently and accurately for comprehension to take place.

More importantly, these are the very skills that stand int he way of that leap to comprehension for many students.  It isn’t enough to hope that students will magically solve the mystery of comprehension themselves and make that leap.  Reading comprehension requires a mind prepared for that challenge.

Learn more at http://www.mybrainware.com/Skate-Kids-and-Ramps-to-Reading.

 


Five Tips for a Better Brain, by Betsy Hill

July 6, 2015

Just about every adult I meet wants to know how to strengthen their perception, thinking and acuity.  I believe in practicing what I preach, so here a five things I practice on a daily basis.

  1. Our brains become what brains do, so do wonderful, interesting and beautiful things.  When my youngest son went to college, the dean welcomed parents and shared with us some of the advice he was giving to our children in other meetings … That the mind is like your living room and that your job is to decorate it.  One thing we know is that what decorates our minds best is doing things that are challenging for us – not the just the same old comfortable things.  Sometime this summer, try something you’ve never done before.  BrainWare SAFARI is one great way to redecorate your mind.  If you haven’t tried it, what are you waiting for?
  2. Practice what is called abductive thinking.  You’ve probably heard of deductive thinking – the kind of thinking police detectives are supposed to do – that is drawing conclusions from multiple facts that point in the same direction.  It’s pretty much what happens when you conclude that there can’t be any other cause or reason for what you’re seeing.  You’ve probably heard of inductive thinking – predictive thinking based on a set of facts.  You have also probably engaged in both inductive and deductive reasoning.  But what about abductive thinking?  That is thinking that takes seemingly inconsistent facts and does not insist on choosing among then – but comes up with a brand new truth.  This is the kind of thinking that you need when you hear about the same incident from two different friends whose stories are very different.  What kind of overarching truth can you find that accounts for all of it?  Or consider how to compare things that you initially think have nothing in common … what do you think a triple-decker ice-cream cone has in common with a political campaign?
  3. While this may sound like hard to do, get enough sleep.  Adults with mild sleep deprivation (being awake for 19 hours) perform on cognitive tests like they were legally intoxicated.  Moreover, your brain actually solves problems and consolidates memory during sleep (during the REM cycle) – so an extra hour or two of sleep may make that problem you’ve been wrestling with easier to solve.  Physical exercise is also very important to brain health and stronger cognitive functioning, so get out and enjoy our beautiful summer weather.  Besides, it’ll tire you out so you’ll sleep better.
  4. Challenge your assumptions.  We all make assumptions all the time and we take information for granted.  When you listen to the news or a speaker at a conference, play devil’s advocate.  Think about what would have to be true for that point of view to be accurate?  Is it complete?  Does it jump too far from basic truths to a conclusion.  Ask yourself what evidence you have that it is true and what evidence you have that might tend to disprove it.  Think about the difference between evidence, opinions, and judgments.
  5. Whatever it is that seems like a puzzle, put it down on paper.  If you are a writer, write.  If you are most comfortable with visual images, draw a  mind map.  Writing is nature’s way of showing us how sloppy our thinking is (paraphrased from someone brilliant … but I haven’t been able to track down the source).  Putting things down on paper forces us to be much more specific about the relationships among things, particularly cause and effect relationships, and a mind map can help us keep a large amount of complex information in an order.  Draw a circle on a piece of paper with the main idea or question in the center.  Draw more circles and connect them to the first and so on.  Don’t forget the connections between the second- and third-order circles.  There is likely to be a new insight somewhere in that map.

There’s plenty of time between now and September to make one or more of these a new habit and have a great summer!


Here They Are: The BrainWare Brain Awareness Week Grant Recipients for 2015

March 16, 2015

It’s Brain Awareness Week, starting today, and we are very excited to announce the recipients of grants awarded as part of the BrainWare Brain Awareness Week Grants Program.  The grants program supports the purpose of Brain Awareness Week in promoting a broader understanding of the importance of brain research and its contribution to effective learning and cognitive development in schools.

The recipients of BrainWare Brain Awareness Week grants for BrainWare SAFARI cognitive skills development software are:

Saint Luke School, Diocese of Palm Beach – Palm Springs, FL
North Woods Discovery School– Redding, CA
Knights Elementary School, Hillsborough County Schools – Plant City, FL
Riverview School, Silver Lake Jt District Schools – Silver Lake, WI

The recipients of BrainWare Brain Awareness Week grants for SkateKids cognitively based reading software are:

SenPokChin School – Oliver, BC
Briggs Elementary School, Jefferson Township Schools – Lake Hopatcong, NJ
Bnos Ysroel of Baltimore – Baltimore, MD

The recipients of tuition grants for the online course From Synapses to Strategies are:

Elaine Schneider, Broome Tioga BOCES – Binghamton, NY
Jane Johnson, St Mary School, Archdiocese of Washington DC – Bryantown, MD
Henry Bartfield, Hebrew Academy Community School, Margate, FL
Brandi Boysun, Hyalite Elementary School, Bozeman School District 7 – Bozeman, MT
Michael Martin, Pioneer Career & Technology Center, Shelby, OH
Deidre Kibbe, Leblanc Special Services, Ascension Parish Schools – Gonzales, LA
Tara Sladek-Maharag, Port Jefferson Middle School, Port Jefferson Schools – Port Jefferson, NY
Jane Lescarbau, Hubert Olson Middle School, Bloomington Public Schools – Bloomington, MN

Brain research has so much to contribute in education.  These grants will enable hundreds of students to experience education that is better adapted to the way the brain learns, and that helps them build the cognitive skills that they will be able to use for the rest of their lives.

We look forward to working with the successful applicants on their implementation of BrainWare SAFARI and SkateKids, as well as interacting with teachers in the online course.  Congratulations to all of the grant recipients!


Are These Children from Lake Wobegon?, by Betsy Hill

March 5, 2015

A little over a week ago, I was in Canada — Sault Ste Marie, Ontario. to be exact.  It was excruciatingly cold, of course, but that’s not why I was thinking of Garrison Keillor’s Lake Wobegon.  The reason I was thinking of Lake Wobegon is that I was remembering the way he closes his Prairie Home Companion show by stating that all of the children in Lake Wobegon are above average.  And the reason that I was in Sault Ste Marie was to share with a school district how the 3rd grade students who used BrainWare SAFARI last year went from pretty much average performance on cognitive tests to way better than average, and how their academic achievement soared as well.

The students who used BrainWare SAFARI in the fall of the 2013-14 school year, had overall scores on the CCAT (the Canadian Cognitive Abilities Test) that were 32 percentile points higher than at the beginning of the year, resulting in 50% of the students scoring at the 70th percentile or above.  At the 70th percentile and above, students are able to thrive in academic work.  Below that, they are likely to need some additional support to reach grade-level expectations.  In fact student performance improved across the spectrum of abilities, as we have seen in numerous prior studies in the U.S. with the CogAT, the U.S. counterpart to the CCAT).  Remarkably, immediately after using BrainWare SAFARI, 70% of students were above the national average.  It sounds a little like Lake Wobegon, doesn’t it?

Often in education, we are in the position of assuming that children arrive in our classrooms with all of the cognitive equipment they need or will ever have.  We need to understand that cognitive ability is something we can actually help students develop.  Shouldn’t every student have an opportunity to be “above average,” as in Lake Wobegon?


Neuroscience and the U.S. Education System, by Betsy Hill

February 16, 2015

Education informed by neuroscience can give new and real meaning to our desire as a nation to leave no child behind.  Moreover, it may offer the only true opportunity for the disruptive change that education needs for current and future generations to be educated to face the challenges ahead.    It can do this in at least three specific ways:

1.  By improving learning at the level of basic cognitive functioning, changing students’ capacity to learn.

Better teaching, better facilities, better technology, etc., are important, but those are external factors.  What about the internal capabilities and stumbling blocks that each student brings to the learning experience?  Neuroscience shows us how to impact the efficiency and effectiveness of the learning process by improving each individual’s underlying mental processing – that is, by changing the experience of learning from the inside out.

One of the things we know from neuroscience is that the brain is plastic, which means it constantly changes, building new pathways and connections.  We also know that every brain is unique – formed and constantly evolving through our experiences.  Experience is not just about facts and declarative knowledge, but about how the brain does what it does.  What one student can do or understand easily escapes another.  Neuroscience helps explain why that is and what to do about it.  Science no longer accepts that intelligence is fixed.  Rather, it continues to document the critical role of experience in developing intellectual ability.

Despite the fact that underlying cognitive skills are essential to all learning, they are not generally taught in schools.  Schools assume that every student brings the necessary cognitive skills to the learning process, or as much of those skills as they will ever have.   The fact that cognitive skills are not explicitly taught in schools does not mean that they cannot be taught, however.  For over half a century, techniques to develop basic cognitive skills have been known and used in various clinical therapies.  Today, these techniques can be delivered via computer-based programs effectively and on a much broader scale, making the delivery of cognitive training programs viable in a classroom setting to all students.  The intellectual gains delivered by a program like BrainWare SAFARI are substantial.

2.  By making schools and teaching more brain-friendly.

Here neuroscience can help us understand and change our practices in a number of ways, including:

  • Better presenting information so that students’ immediate sensory memory lets the right information into the brain.
  • Taking advantage of the relationship between working memory, where we consciously process what we learn, and long-term memory storage.
  • Integrating multiple senses and media to enhance learning, since the brain processes information in multiple ways simultaneously.
  • Incorporating emotion and mnemonics to aid in long-term memory consolidation
  • Making curriculum meaningful, since meaning and relating new information to old are what enable new information to be stored.
  • Understanding the different ways declarative memory and procedural memory are stored and used (retrieved).

The reason to engage students with more meaningful and relevant curriculum and through problems, projects and simulations is not simply because that makes learning more fun, but because it is, in fact, student engagement that results in learning.  And higher levels of engagement result in more and better learning and the ability to apply what is learned in the real world.

3. By helping students develop so-called 21st century skills, the keys to college and career-readiness.

Developing problem-solving ability, communication skills and creativity is fundamentally about developing the brain and its processing ability in each individual student.  These are skills that cannot be taught through pure direct instruction.  One wouldn’t, for example, assume that explaining the principles of pole-vaulting would suddenly imbue a student with the ability to coordinate muscles, brain, strength and balance to clear a bar.  The same holds true for critical thinking and other prized 21st century skills.

While there is broad consensus regarding the importance of these skills, there is much uncertainty about how to help students develop them and over how to measure them.  However, as we move away from measuring content absorbed and toward measuring the effectiveness of mental processes, neuroscience is likely to be indispensable.

Are other ways that you can see neuroscience helping improve the U.S. education system?  Let us hear what you think!