Every Day is Election Day — Even in Your Classroom, by Betsy Hill

August 30, 2016

As I was driving to work this morning, I listened to an interview with Rebecca Sive, the author of Every Day is Election Day.  While Sive focuses specifically on women in elective office, my first thought when I heard the title of the book was, “Yes!  This is what I have been saying for years.”

To be precise, what I have been saying for years is that we are all elected to our office (job/role) every day.  Every day, the people around us decide whether to listen to us, to follow us, to imitate us or to ignore us.  They decide whether to step up and join us in championing what we want to accomplish, or they join the opposition or they just decide to “sit this one out.”

At one time in my career, I was working for an organization in a consulting role.  The vice president of sales was the number two person in the organization.  But that VP was a poor role model; he didn’t make logical decisions; he didn’t have a vision that he could get people behind; he wasn’t proactive; and he didn’t encourage others in the organization to come to him with ideas or challenges.  In short, he didn’t get things done.  People started coming to me.  Several months later, I was named chief operating officer and was the clear number two in the company.

Why?  Because I ran for my office every day.  I worked to build trust.  I created a vision and worked to get buy-in.  I worked hard, never asking anyone to do anything I wouldn’t do myself (and they could see me doing it).

The application to the workplace is so obvious that I started to consider another environment I spend a lot of time in – a classroom.   What does it mean to think about every day as election day?  Are students voters?  You bet!

One piece of advice in Sive’s book is “you can’t care too much.”  That reminded me of another true statement I heard from a school district superintendent several years ago:  “Students don’t care how much you know until they know how much you care.”  Caring builds trust and trust is critical to an environment in which students choose to learn.  In fact, students vote (decide) every day, in every class, whether to engage, whether to strive, whether there is anything of value to pay attention to.

Teachers, of course, do have some authority from the outset, just as that vice president of sales did in the company I worked for.  But our ability to create a vision, to engage students’ minds and hearts, to inspire trust, and to show how much we care, are what keeps us in the role of teacher, not just somebody at the front of the classroom.

I’m running for election again today.  How about you?


When Brain Training Works – Points of Controversy, by Betsy Hill and Roger Stark

August 23, 2016

Pre-publication publicity for a new book on the value of brain training claims that there are 5 conditions that make it effective.  While it surfaces some important considerations, it is likely to disappoint anyone who adheres strictly to the five conditions.

Here’s where the advice falls short:

  1. It must engage and exercise a core brain-based capacity or neural circuit identified to be relevant to real-life outcomes.

Response:  First of all, if there is a brain-based capacity or neural circuit that hasn’t been identified as relevant to real-life outcomes, then it probably doesn’t exist.  The purpose of our brain is survival, so all mental capacities are arguably relevant to real-life outcomes.  But more importantly, it is insufficient to say that training must target a mental process shown in research to be relevant to real-life performance.  The training should actually be able to demonstrate improvement in whatever that real-life performance is.   This is actually where much brain training falls down.  It’s not that the training doesn’t connect the exercise to a specific neural process, but that it can’t demonstrate actual change in real life application.

2.  It must target a performance bottleneck.

Response: The issue here is the model of brain functioning that underlies the statement.  A bottleneck is relevant for a linear process.  If step 2 of 10 in a manufacturing plant is slow, then that produces a “bottleneck.”  Speeding up step 2 will speed up the whole manufacturing process.  But our brains are not manufacturing processes.  Rather, they are complex systems with multiple processes occurring simultaneously (and hopefully in coordination).  In fact, recent research supports the idea that multiple mental processes are involved in just about everything we do and they have to work together.  While there is some truth to targeting weaker functions, it is at least as true that brain training, to be effective, is about integrating multiple systems.

3.  It requires a minimum “dose” of 15 hours total per targeted brain function performed over 8 weeks or less.

Response:  It’s refreshing, actually, to see a consensus emerging that a few minutes or hours of training here and there won’t do much for cognitive fitness.  But there is a fundamental flaw in the implication that each brain function must be trained independently.  If that were the case, then a training regimen of 150 hours would be required to address 10 targeted brain functions.  In our research, we have found that a dramatic impact on multiple brain functions is achieved in 35 to 50 hours of training multiple cognitive skill areas in an integrated fashion (using BrainWare SAFARI 3 to 5 times per week, in 30-45 minutes sessions over about 12 weeks).  We can agree that noticeable differences start to appear at the 6-8 week mark, but much more can be accomplished than this description of the book suggests.

4.  Training must adapt to performance, require effortful attention, and increase in difficulty.

Response:  This is all true, but it neglects what we know about what actually motivates effortful attention and persistence in training.  Parents and clinicians we talk to tell us, over and over, that most other brain training programs they have experienced are BORING.  Even when they are adaptive, increase in difficulty, and require focus (effortful attention).  Human beings don’t expend effortful attention when things are not engaging.  Students don’t care how much you know until they know how much you care.  The design of the training program needs to be motivational, engaging and reward, not just demand, persistence.

5.  Continued practice is required for continued benefits.

Response:  This condition suggests that one needs to continue training essentially forever.  First, we want to say, “Wrong,” but then we want to relent and acknowledge that, “It depends.”  It also requires that we consider what “practice” means.

When children complete a brain training program (which we think is better termed cognitive training), they bring their improved attention skills, working memory, or visual-spatial processing to an educational environment that, in most cases, continues to put demands on those very cognitive skills.  In other words, they are using and practicing those enhanced cognitive skills every day.

If you are an adult in the workplace, the same would be true, by and large.  You are in an environment where you “practice” your improved skills constantly.  After all, if they haven’t transferred to real life, what’s the point?  If your goal, as an adult, is not to perform better, but to be a “high functioning couch potato,” then that is another story altogether.

One situation where continued benefits may require ongoing training is for those who want to build cognitive reserve and/or mitigate the effects of the declining demands of everyday life as they age.  For many individuals who are not as active as they used to be in intellectually demanding activities, ongoing training makes sense.

The idea behind brain training is that getting skills to the level of automaticity so that they are used in real life, means that real life becomes the practice.  While continued training may be useful for some, the better the training, the better the transfer, the better the individual applies their stronger cognitive functions in everyday life, the more challenges they take on, the more problems they solve … and the less need they will have for ongoing training.

We welcome the opportunity to explore the fascinating topic of brain training – and everything we know and don’t know – with you.  Please comment or feel free to email us at bhill@mybrainware.com or rstark@mybrainware.com.


The Mystery of Reading Comprehension, by Betsy Hill

June 18, 2016

Many students can read a passage,but afterwards are unable to tell you what they read.  Or perhaps they can answer simple factual questions (regurgitate), but it really has no meaning for them and will be forgotten the next day.

How students make the leap from decoding to understanding is something that has challenged teachers since the very beginning of reading and writing (I don’t really have a reference for comprehension problems with the Dead Sea Scrolls, but I suspect that I’m not far off the truth).

And what is reading comprehension, anyway?

The way our minds comprehend what we hear or read is to connect what we are hearing or reading to knowledge and information we already know.  Regurgitating is not comprehending.  Regurgitation only involves short-term memory.  Our brains are designed to discard what is held in short-term memory if we haven’t found a way to make it meaningful.  So, of course, we can “read” but still not have understood a darn thing.

Comprehending involves making meaning, by visualizing and applying the information from the text being read, relating ideas to what is already known, and holding ideas in mind while we think about them.  But most reading instruction doesn’t address “visualizing”, or “holding ideas in mind.”  In fact, those mental processes are only two, although a very important two, of the cognitive skills (or mental processes) that must be working efficiently and accurately for comprehension to take place.

More importantly, these are the very skills that stand int he way of that leap to comprehension for many students.  It isn’t enough to hope that students will magically solve the mystery of comprehension themselves and make that leap.  Reading comprehension requires a mind prepared for that challenge.

Learn more at http://www.mybrainware.com/Skate-Kids-and-Ramps-to-Reading.

 


Five Tips for a Better Brain, by Betsy Hill

July 6, 2015

Just about every adult I meet wants to know how to strengthen their perception, thinking and acuity.  I believe in practicing what I preach, so here a five things I practice on a daily basis.

  1. Our brains become what brains do, so do wonderful, interesting and beautiful things.  When my youngest son went to college, the dean welcomed parents and shared with us some of the advice he was giving to our children in other meetings … That the mind is like your living room and that your job is to decorate it.  One thing we know is that what decorates our minds best is doing things that are challenging for us – not the just the same old comfortable things.  Sometime this summer, try something you’ve never done before.  BrainWare SAFARI is one great way to redecorate your mind.  If you haven’t tried it, what are you waiting for?
  2. Practice what is called abductive thinking.  You’ve probably heard of deductive thinking – the kind of thinking police detectives are supposed to do – that is drawing conclusions from multiple facts that point in the same direction.  It’s pretty much what happens when you conclude that there can’t be any other cause or reason for what you’re seeing.  You’ve probably heard of inductive thinking – predictive thinking based on a set of facts.  You have also probably engaged in both inductive and deductive reasoning.  But what about abductive thinking?  That is thinking that takes seemingly inconsistent facts and does not insist on choosing among then – but comes up with a brand new truth.  This is the kind of thinking that you need when you hear about the same incident from two different friends whose stories are very different.  What kind of overarching truth can you find that accounts for all of it?  Or consider how to compare things that you initially think have nothing in common … what do you think a triple-decker ice-cream cone has in common with a political campaign?
  3. While this may sound like hard to do, get enough sleep.  Adults with mild sleep deprivation (being awake for 19 hours) perform on cognitive tests like they were legally intoxicated.  Moreover, your brain actually solves problems and consolidates memory during sleep (during the REM cycle) – so an extra hour or two of sleep may make that problem you’ve been wrestling with easier to solve.  Physical exercise is also very important to brain health and stronger cognitive functioning, so get out and enjoy our beautiful summer weather.  Besides, it’ll tire you out so you’ll sleep better.
  4. Challenge your assumptions.  We all make assumptions all the time and we take information for granted.  When you listen to the news or a speaker at a conference, play devil’s advocate.  Think about what would have to be true for that point of view to be accurate?  Is it complete?  Does it jump too far from basic truths to a conclusion.  Ask yourself what evidence you have that it is true and what evidence you have that might tend to disprove it.  Think about the difference between evidence, opinions, and judgments.
  5. Whatever it is that seems like a puzzle, put it down on paper.  If you are a writer, write.  If you are most comfortable with visual images, draw a  mind map.  Writing is nature’s way of showing us how sloppy our thinking is (paraphrased from someone brilliant … but I haven’t been able to track down the source).  Putting things down on paper forces us to be much more specific about the relationships among things, particularly cause and effect relationships, and a mind map can help us keep a large amount of complex information in an order.  Draw a circle on a piece of paper with the main idea or question in the center.  Draw more circles and connect them to the first and so on.  Don’t forget the connections between the second- and third-order circles.  There is likely to be a new insight somewhere in that map.

There’s plenty of time between now and September to make one or more of these a new habit and have a great summer!


Are These Children from Lake Wobegon?, by Betsy Hill

March 5, 2015

A little over a week ago, I was in Canada — Sault Ste Marie, Ontario. to be exact.  It was excruciatingly cold, of course, but that’s not why I was thinking of Garrison Keillor’s Lake Wobegon.  The reason I was thinking of Lake Wobegon is that I was remembering the way he closes his Prairie Home Companion show by stating that all of the children in Lake Wobegon are above average.  And the reason that I was in Sault Ste Marie was to share with a school district how the 3rd grade students who used BrainWare SAFARI last year went from pretty much average performance on cognitive tests to way better than average, and how their academic achievement soared as well.

The students who used BrainWare SAFARI in the fall of the 2013-14 school year, had overall scores on the CCAT (the Canadian Cognitive Abilities Test) that were 32 percentile points higher than at the beginning of the year, resulting in 50% of the students scoring at the 70th percentile or above.  At the 70th percentile and above, students are able to thrive in academic work.  Below that, they are likely to need some additional support to reach grade-level expectations.  In fact student performance improved across the spectrum of abilities, as we have seen in numerous prior studies in the U.S. with the CogAT, the U.S. counterpart to the CCAT).  Remarkably, immediately after using BrainWare SAFARI, 70% of students were above the national average.  It sounds a little like Lake Wobegon, doesn’t it?

Often in education, we are in the position of assuming that children arrive in our classrooms with all of the cognitive equipment they need or will ever have.  We need to understand that cognitive ability is something we can actually help students develop.  Shouldn’t every student have an opportunity to be “above average,” as in Lake Wobegon?


Neuroscience and the U.S. Education System, by Betsy Hill

February 16, 2015

Education informed by neuroscience can give new and real meaning to our desire as a nation to leave no child behind.  Moreover, it may offer the only true opportunity for the disruptive change that education needs for current and future generations to be educated to face the challenges ahead.    It can do this in at least three specific ways:

1.  By improving learning at the level of basic cognitive functioning, changing students’ capacity to learn.

Better teaching, better facilities, better technology, etc., are important, but those are external factors.  What about the internal capabilities and stumbling blocks that each student brings to the learning experience?  Neuroscience shows us how to impact the efficiency and effectiveness of the learning process by improving each individual’s underlying mental processing – that is, by changing the experience of learning from the inside out.

One of the things we know from neuroscience is that the brain is plastic, which means it constantly changes, building new pathways and connections.  We also know that every brain is unique – formed and constantly evolving through our experiences.  Experience is not just about facts and declarative knowledge, but about how the brain does what it does.  What one student can do or understand easily escapes another.  Neuroscience helps explain why that is and what to do about it.  Science no longer accepts that intelligence is fixed.  Rather, it continues to document the critical role of experience in developing intellectual ability.

Despite the fact that underlying cognitive skills are essential to all learning, they are not generally taught in schools.  Schools assume that every student brings the necessary cognitive skills to the learning process, or as much of those skills as they will ever have.   The fact that cognitive skills are not explicitly taught in schools does not mean that they cannot be taught, however.  For over half a century, techniques to develop basic cognitive skills have been known and used in various clinical therapies.  Today, these techniques can be delivered via computer-based programs effectively and on a much broader scale, making the delivery of cognitive training programs viable in a classroom setting to all students.  The intellectual gains delivered by a program like BrainWare SAFARI are substantial.

2.  By making schools and teaching more brain-friendly.

Here neuroscience can help us understand and change our practices in a number of ways, including:

  • Better presenting information so that students’ immediate sensory memory lets the right information into the brain.
  • Taking advantage of the relationship between working memory, where we consciously process what we learn, and long-term memory storage.
  • Integrating multiple senses and media to enhance learning, since the brain processes information in multiple ways simultaneously.
  • Incorporating emotion and mnemonics to aid in long-term memory consolidation
  • Making curriculum meaningful, since meaning and relating new information to old are what enable new information to be stored.
  • Understanding the different ways declarative memory and procedural memory are stored and used (retrieved).

The reason to engage students with more meaningful and relevant curriculum and through problems, projects and simulations is not simply because that makes learning more fun, but because it is, in fact, student engagement that results in learning.  And higher levels of engagement result in more and better learning and the ability to apply what is learned in the real world.

3. By helping students develop so-called 21st century skills, the keys to college and career-readiness.

Developing problem-solving ability, communication skills and creativity is fundamentally about developing the brain and its processing ability in each individual student.  These are skills that cannot be taught through pure direct instruction.  One wouldn’t, for example, assume that explaining the principles of pole-vaulting would suddenly imbue a student with the ability to coordinate muscles, brain, strength and balance to clear a bar.  The same holds true for critical thinking and other prized 21st century skills.

While there is broad consensus regarding the importance of these skills, there is much uncertainty about how to help students develop them and over how to measure them.  However, as we move away from measuring content absorbed and toward measuring the effectiveness of mental processes, neuroscience is likely to be indispensable.

Are other ways that you can see neuroscience helping improve the U.S. education system?  Let us hear what you think!


Brain Training Programs: Neither Silver Bullet nor Scam, by Betsy Hill

February 4, 2015

A recent article asked the question: Are Brain Training Programs a Scam? Like many articles on the subject these days, the analysis was right in some respects, but missed several key points. The numbered statements below in italics are from the article. The comments following each point are mine.

1.  Most brain training programs are based on well known neuroscience and cognitive science research tests.

This is a fundamental flaw of many brain training programs. They involve training on the tests themselves. We know that our brains become better at what they do over and over. So, if we practice the very same skills that we will be tested on, you will get better at them and perform better on the test. The real question is how you train skills so that they will be available in everything you do in life.

2.  Brain training companies may claim unique or revolutionary training techniques, but they typically are offering more complex and appealing variations of these basic neurocognitive tests.

This is one of the important ways BrainWare SAFARI is different from other brain training programs. It was built on clinical therapy practices from multiple disciplines over several decades designed to help people function better in school or the workplace or in life, not to perform better on a test.

3.  Cognitive training relies on the process of neuroplasticity. Neuroplasticity is the biological method for how the brain responds to its environment – learning the skills and adaptive behavior necessary to survive. This pattern of learned behavior, skill acquisition, and memory encoding is also known as experience and wisdom.

Neuroplasticity is the basis for all brain training; that is clear. Neuroplasticity is not a method; it is an attribute or property of brains and means that they are constantly changing. Everything we do changes our brains physiologically. Every interaction with the outside environment changes our brains. The purpose of a brain is survival. Brains learn from experience, but I think that the word “wisdom” is misapplied here. Does being able to walk or drive a car connote wisdom? Most brain training programs are about skill acquisition and automaticity, not about judgment, perspective, complex analysis and other hallmarks of wisdom. In discussions of these topics, it is very important to use terminology correctly.

4.  The more specialized a cognitive training program can be will increase the likelihood of effective skills transfer. A good example is immersive cognitive training for military and commercial airline pilots. This is true in one sense. When skills are very specific to a situation, like knowing how to land a plane, then it is important to practice that skill. However, another analogy is executing a football play. Football players do training of basic skills and then apply them in a variety of situations so that the skills generalize. There is a distinction between transfer and generalization.

But will immersive cognitive training in a simulated flight deck improve the pilot’s ability to learn a foreign language faster or be better at playing blackjack? This is an excellent question. Another question is, are there skills that can be developed that are more basic than landing a plane or speaking a language or playing blackjack that, if developed, will help performance in all those activities? That doesn’t mean that training of basic cognitive skills is sufficient to be able to land a plane, but the right kind of training in visual-spatial processing, visual span, oculomotor skills, attention, reaction time, etc., might, and probably would, drive improvement in landing a plane … AND taking off … AND changing course during flight … AND dealing with a sick passenger … AND communicating with passengers when there is a delay  … AND …

5.  Highly specialized cognitive training (for highly specialized occupations) can be effective, and also tends to be very expensive. DARPA, the research and technology arm of the US Department of Defense is working on several cognitive training efforts to boost focus, coordination and control for drone pilots as an example. 

R&D is expensive. That doesn’t mean that it will be expensive to deliver once they develop it, and in fact will probably result in tremendous cost savings once developed because everything else they do will be more efficient and effective.

6.  Structured cognitive training holds the future promise of addressing a host of neurocognitive and neuropsychiatric conditions. There is a substantial amount of venture capital and government research dollars flowing into this area, but independent research validation for most structured cognitive training is still lacking and off in the future.

It is true that independent research validation is not conclusive yet for many training programs. Different programs are at different stages of proof. Research reports on BrainWare SAFARI, which include both peer-reviewed published research and field studies, are available at http://www.mybrainware.com/research.

7. The brain training industry as a whole faces a serious problem that will be hard to solve, namely, the barrier to market entry for brain training services and products is very low. Any company can create a few online brain games “based on neuroscience” and then market them as a cure-all for Alzheimer’s or dyslexia, or as a quick and easy way to raise your IQ.

This is very true. This is why I take this time to clarify some very important points.

There is new territory for all of us. Consumers, educators, health care practitioners and the media themselves will need to become educated in this area so that they can make appropriate judgments. It will require that people be open but skeptical. And it will require some standards or principles of how to make decisions about brain training programs. For a list of criteria for an effective brain-training programs, click here.