When Brain Training Works – Points of Controversy, by Betsy Hill and Roger Stark

August 23, 2016

Pre-publication publicity for a new book on the value of brain training claims that there are 5 conditions that make it effective.  While it surfaces some important considerations, it is likely to disappoint anyone who adheres strictly to the five conditions.

Here’s where the advice falls short:

  1. It must engage and exercise a core brain-based capacity or neural circuit identified to be relevant to real-life outcomes.

Response:  First of all, if there is a brain-based capacity or neural circuit that hasn’t been identified as relevant to real-life outcomes, then it probably doesn’t exist.  The purpose of our brain is survival, so all mental capacities are arguably relevant to real-life outcomes.  But more importantly, it is insufficient to say that training must target a mental process shown in research to be relevant to real-life performance.  The training should actually be able to demonstrate improvement in whatever that real-life performance is.   This is actually where much brain training falls down.  It’s not that the training doesn’t connect the exercise to a specific neural process, but that it can’t demonstrate actual change in real life application.

2.  It must target a performance bottleneck.

Response: The issue here is the model of brain functioning that underlies the statement.  A bottleneck is relevant for a linear process.  If step 2 of 10 in a manufacturing plant is slow, then that produces a “bottleneck.”  Speeding up step 2 will speed up the whole manufacturing process.  But our brains are not manufacturing processes.  Rather, they are complex systems with multiple processes occurring simultaneously (and hopefully in coordination).  In fact, recent research supports the idea that multiple mental processes are involved in just about everything we do and they have to work together.  While there is some truth to targeting weaker functions, it is at least as true that brain training, to be effective, is about integrating multiple systems.

3.  It requires a minimum “dose” of 15 hours total per targeted brain function performed over 8 weeks or less.

Response:  It’s refreshing, actually, to see a consensus emerging that a few minutes or hours of training here and there won’t do much for cognitive fitness.  But there is a fundamental flaw in the implication that each brain function must be trained independently.  If that were the case, then a training regimen of 150 hours would be required to address 10 targeted brain functions.  In our research, we have found that a dramatic impact on multiple brain functions is achieved in 35 to 50 hours of training multiple cognitive skill areas in an integrated fashion (using BrainWare SAFARI 3 to 5 times per week, in 30-45 minutes sessions over about 12 weeks).  We can agree that noticeable differences start to appear at the 6-8 week mark, but much more can be accomplished than this description of the book suggests.

4.  Training must adapt to performance, require effortful attention, and increase in difficulty.

Response:  This is all true, but it neglects what we know about what actually motivates effortful attention and persistence in training.  Parents and clinicians we talk to tell us, over and over, that most other brain training programs they have experienced are BORING.  Even when they are adaptive, increase in difficulty, and require focus (effortful attention).  Human beings don’t expend effortful attention when things are not engaging.  Students don’t care how much you know until they know how much you care.  The design of the training program needs to be motivational, engaging and reward, not just demand, persistence.

5.  Continued practice is required for continued benefits.

Response:  This condition suggests that one needs to continue training essentially forever.  First, we want to say, “Wrong,” but then we want to relent and acknowledge that, “It depends.”  It also requires that we consider what “practice” means.

When children complete a brain training program (which we think is better termed cognitive training), they bring their improved attention skills, working memory, or visual-spatial processing to an educational environment that, in most cases, continues to put demands on those very cognitive skills.  In other words, they are using and practicing those enhanced cognitive skills every day.

If you are an adult in the workplace, the same would be true, by and large.  You are in an environment where you “practice” your improved skills constantly.  After all, if they haven’t transferred to real life, what’s the point?  If your goal, as an adult, is not to perform better, but to be a “high functioning couch potato,” then that is another story altogether.

One situation where continued benefits may require ongoing training is for those who want to build cognitive reserve and/or mitigate the effects of the declining demands of everyday life as they age.  For many individuals who are not as active as they used to be in intellectually demanding activities, ongoing training makes sense.

The idea behind brain training is that getting skills to the level of automaticity so that they are used in real life, means that real life becomes the practice.  While continued training may be useful for some, the better the training, the better the transfer, the better the individual applies their stronger cognitive functions in everyday life, the more challenges they take on, the more problems they solve … and the less need they will have for ongoing training.

We welcome the opportunity to explore the fascinating topic of brain training – and everything we know and don’t know – with you.  Please comment or feel free to email us at bhill@mybrainware.com or rstark@mybrainware.com.


Cognitive Skills Development as a Supplement to Vision Therapy, by Betsy Hill

July 7, 2016

I am a graduate of vision therapy myself.  And I will never forget the moment when my vision, which had been blurry my entire life, suddenly became clear, following many months of hard work with a vision therapist.  At the time, I thought it was a miracle.  Today, I know that the “miracle” is the ability of our brains to “rewire” themselves with the right kind of training.  When our eyes work together, or when visual focus improves, it transforms our ability to function in the world.

For some individuals, vision therapy is a vital first step, but there may still be more work to be done to integrate stronger visual skills with other mental processes, such as selective attention, working memory, sequential processing, directionality and other foundational cognitive skills and executive functions. That integration is what enables the stronger visual skills to be used directly in reading and math and other academic and life tasks.

BrainWare SAFARI is a cognitive skills training program that evolved from multi-disciplinary clinical therapy.  It is different from other cognitive training programs because it is both comprehensive and integrated.  In peer-reviewed published research, gains of 2 to 4 years of cognitive growth, and 1 to 2 years of academic growth, have been shown when the program is used 3 to 5 times a week for 12 weeks.

Once someone has completed (or has made sufficient progress in) a course of vision therapy and it is time to integrate their stronger visual processing with other cognitive processes, BrainWare SAFARI can provide that additional boost towards strong academic performance and success with everyday tasks.

Clinicians have found a variety of ways to work with clients using BrainWare SAFARI.  While the recommended protocol is 3 to 5 times a week, that doesn’t mean 3 to 5 office visits.  Because it is a software program, clients can use the program from any computer that has the program installed.  BrainWare captures and reports real-time data on progress in the program, to help clinicians check on compliance with the recommended protocol, and weekly or biweekly visits can assess and reinforce progress and the application of newly developing skills.

Clinicians can learn more about using BrainWare SAFARI in conjunction with vision therapy at: Cognitive Skills Training Webinar.


Neuroscience and the U.S. Education System, by Betsy Hill

February 16, 2015

Education informed by neuroscience can give new and real meaning to our desire as a nation to leave no child behind.  Moreover, it may offer the only true opportunity for the disruptive change that education needs for current and future generations to be educated to face the challenges ahead.    It can do this in at least three specific ways:

1.  By improving learning at the level of basic cognitive functioning, changing students’ capacity to learn.

Better teaching, better facilities, better technology, etc., are important, but those are external factors.  What about the internal capabilities and stumbling blocks that each student brings to the learning experience?  Neuroscience shows us how to impact the efficiency and effectiveness of the learning process by improving each individual’s underlying mental processing – that is, by changing the experience of learning from the inside out.

One of the things we know from neuroscience is that the brain is plastic, which means it constantly changes, building new pathways and connections.  We also know that every brain is unique – formed and constantly evolving through our experiences.  Experience is not just about facts and declarative knowledge, but about how the brain does what it does.  What one student can do or understand easily escapes another.  Neuroscience helps explain why that is and what to do about it.  Science no longer accepts that intelligence is fixed.  Rather, it continues to document the critical role of experience in developing intellectual ability.

Despite the fact that underlying cognitive skills are essential to all learning, they are not generally taught in schools.  Schools assume that every student brings the necessary cognitive skills to the learning process, or as much of those skills as they will ever have.   The fact that cognitive skills are not explicitly taught in schools does not mean that they cannot be taught, however.  For over half a century, techniques to develop basic cognitive skills have been known and used in various clinical therapies.  Today, these techniques can be delivered via computer-based programs effectively and on a much broader scale, making the delivery of cognitive training programs viable in a classroom setting to all students.  The intellectual gains delivered by a program like BrainWare SAFARI are substantial.

2.  By making schools and teaching more brain-friendly.

Here neuroscience can help us understand and change our practices in a number of ways, including:

  • Better presenting information so that students’ immediate sensory memory lets the right information into the brain.
  • Taking advantage of the relationship between working memory, where we consciously process what we learn, and long-term memory storage.
  • Integrating multiple senses and media to enhance learning, since the brain processes information in multiple ways simultaneously.
  • Incorporating emotion and mnemonics to aid in long-term memory consolidation
  • Making curriculum meaningful, since meaning and relating new information to old are what enable new information to be stored.
  • Understanding the different ways declarative memory and procedural memory are stored and used (retrieved).

The reason to engage students with more meaningful and relevant curriculum and through problems, projects and simulations is not simply because that makes learning more fun, but because it is, in fact, student engagement that results in learning.  And higher levels of engagement result in more and better learning and the ability to apply what is learned in the real world.

3. By helping students develop so-called 21st century skills, the keys to college and career-readiness.

Developing problem-solving ability, communication skills and creativity is fundamentally about developing the brain and its processing ability in each individual student.  These are skills that cannot be taught through pure direct instruction.  One wouldn’t, for example, assume that explaining the principles of pole-vaulting would suddenly imbue a student with the ability to coordinate muscles, brain, strength and balance to clear a bar.  The same holds true for critical thinking and other prized 21st century skills.

While there is broad consensus regarding the importance of these skills, there is much uncertainty about how to help students develop them and over how to measure them.  However, as we move away from measuring content absorbed and toward measuring the effectiveness of mental processes, neuroscience is likely to be indispensable.

Are other ways that you can see neuroscience helping improve the U.S. education system?  Let us hear what you think!


Brain Training Programs: Neither Silver Bullet nor Scam, by Betsy Hill

February 4, 2015

A recent article asked the question: Are Brain Training Programs a Scam? Like many articles on the subject these days, the analysis was right in some respects, but missed several key points. The numbered statements below in italics are from the article. The comments following each point are mine.

1.  Most brain training programs are based on well known neuroscience and cognitive science research tests.

This is a fundamental flaw of many brain training programs. They involve training on the tests themselves. We know that our brains become better at what they do over and over. So, if we practice the very same skills that we will be tested on, you will get better at them and perform better on the test. The real question is how you train skills so that they will be available in everything you do in life.

2.  Brain training companies may claim unique or revolutionary training techniques, but they typically are offering more complex and appealing variations of these basic neurocognitive tests.

This is one of the important ways BrainWare SAFARI is different from other brain training programs. It was built on clinical therapy practices from multiple disciplines over several decades designed to help people function better in school or the workplace or in life, not to perform better on a test.

3.  Cognitive training relies on the process of neuroplasticity. Neuroplasticity is the biological method for how the brain responds to its environment – learning the skills and adaptive behavior necessary to survive. This pattern of learned behavior, skill acquisition, and memory encoding is also known as experience and wisdom.

Neuroplasticity is the basis for all brain training; that is clear. Neuroplasticity is not a method; it is an attribute or property of brains and means that they are constantly changing. Everything we do changes our brains physiologically. Every interaction with the outside environment changes our brains. The purpose of a brain is survival. Brains learn from experience, but I think that the word “wisdom” is misapplied here. Does being able to walk or drive a car connote wisdom? Most brain training programs are about skill acquisition and automaticity, not about judgment, perspective, complex analysis and other hallmarks of wisdom. In discussions of these topics, it is very important to use terminology correctly.

4.  The more specialized a cognitive training program can be will increase the likelihood of effective skills transfer. A good example is immersive cognitive training for military and commercial airline pilots. This is true in one sense. When skills are very specific to a situation, like knowing how to land a plane, then it is important to practice that skill. However, another analogy is executing a football play. Football players do training of basic skills and then apply them in a variety of situations so that the skills generalize. There is a distinction between transfer and generalization.

But will immersive cognitive training in a simulated flight deck improve the pilot’s ability to learn a foreign language faster or be better at playing blackjack? This is an excellent question. Another question is, are there skills that can be developed that are more basic than landing a plane or speaking a language or playing blackjack that, if developed, will help performance in all those activities? That doesn’t mean that training of basic cognitive skills is sufficient to be able to land a plane, but the right kind of training in visual-spatial processing, visual span, oculomotor skills, attention, reaction time, etc., might, and probably would, drive improvement in landing a plane … AND taking off … AND changing course during flight … AND dealing with a sick passenger … AND communicating with passengers when there is a delay  … AND …

5.  Highly specialized cognitive training (for highly specialized occupations) can be effective, and also tends to be very expensive. DARPA, the research and technology arm of the US Department of Defense is working on several cognitive training efforts to boost focus, coordination and control for drone pilots as an example. 

R&D is expensive. That doesn’t mean that it will be expensive to deliver once they develop it, and in fact will probably result in tremendous cost savings once developed because everything else they do will be more efficient and effective.

6.  Structured cognitive training holds the future promise of addressing a host of neurocognitive and neuropsychiatric conditions. There is a substantial amount of venture capital and government research dollars flowing into this area, but independent research validation for most structured cognitive training is still lacking and off in the future.

It is true that independent research validation is not conclusive yet for many training programs. Different programs are at different stages of proof. Research reports on BrainWare SAFARI, which include both peer-reviewed published research and field studies, are available at http://www.mybrainware.com/research.

7. The brain training industry as a whole faces a serious problem that will be hard to solve, namely, the barrier to market entry for brain training services and products is very low. Any company can create a few online brain games “based on neuroscience” and then market them as a cure-all for Alzheimer’s or dyslexia, or as a quick and easy way to raise your IQ.

This is very true. This is why I take this time to clarify some very important points.

There is new territory for all of us. Consumers, educators, health care practitioners and the media themselves will need to become educated in this area so that they can make appropriate judgments. It will require that people be open but skeptical. And it will require some standards or principles of how to make decisions about brain training programs. For a list of criteria for an effective brain-training programs, click here.


Deal with the Big Rocks First … Prioritizing — by Betsy Hill

May 27, 2014

This activity is one of several End Summer Brain Drain activities available at http://www.mybrainware.com/how-it-works/end-summer-brain-drain/

Have you ever noticed that some people just drift through life dealing with each problem as it comes along and then wonder where all the time has gone, and why they haven’t accomplished more?

Other people seem to live lives that are very well organized and are able to accomplish a great deal.

You can do this activity just by imagining it, but it will be even more memorable if you actually try this with your child.  Assemble a large jar, a pile of big rocks (ones that will fit through the mouth of the jar), a pile of medium-size rocks, a bunch of pebbles, some sand and some water.  Your job with your child is to get all of the rocks, pebbles, sand and water into the jar.

It is good to let your child experiment with different ways to do this, even if they decide they need to start over several times.  What your child will discover is that If they start with the sand and then add the pebbles and then the medium-size rocks, the jar will fill up before they can get to the big rocks.  But if they start with the big rocks, they can get them all in and the smaller items will fill in the spaces in between.

You can point out to your child that it’s the same with things in your life.  You can begin to take charge of your life a lot more if you take the time to decide what is most important to you.

It’s not that you have to decide once for all time.  What’s important can change from minute to minute, or at least from day to day.  But at a particular time, it’s good to know what is important and what isn’t.  That way, you can take care of the important things first and let the less important ones fill in the cracks.

One way to get started on prioritizing with your child is for you each to make a list of things in some category that you both enjoy or know about.  For example, you could make a list of your friends, books that you like, things around the house that you want to change, events that have happened in the past few weeks or that are expected to happen in the next few.

Try to get at least ten items on your list, but you can still do this if you have only three or four.

Once you each have your list, number the items in order of importance.

Then take turns telling each other why you have put them in that order.  What makes one thing more important than another?

If you and your child continue to practice prioritizing from time to time, referring back to your experiment with the jar and the rocks, you will probably find that it becomes a way to focus everyone’s attention on the important things.  Maybe next time, your child is worried about something trivial, all you will have to say is, “Is that one of the big rocks?”


Cognitive Skills Development in an Accelerated Curriculum – by Betsy Hill

April 10, 2014

Much of our work has dealt with helping struggling students — those who are behind or have identified cognitive deficits — but it is important to remember that very bright students can also benefit from developing their cognitive skills and executive functions.  Here’s a story that explains what this can look like:

Dr. Sara Fraser, a clinical psychologist and Director of Students Services at Curtis School in Los Angeles, California, had been following the literature on executive functions for some time before she encountered BrainWare SAFARI at a Leaning and the Brain Conference in 2012. What she had seen up until that point was not all that encouraging – training on working memory that didn’t seem to transfer beyond short-term memory. It was also labor-intensive and would require a pull-out approach in their school setting.

What appealed to Dr. Fraser about BrainWare SAFARI was that its video-game format would appeal to their students, that it was supported by research showing that the breadth of cognitive skills developed meant that they could expect to see transfer to academic tasks, and that it could be implemented by teachers within the classroom.

The next step was to bring some teachers into the process – enter Joan Cashel and Susie Sobul, two of Curtis School’s third-grade teachers. Following a webinar demonstration, both teachers used BrainWare SAFARI themselves over the summer, with Joan finishing all but a few levels (we’re impressed!). An implementation webinar in the fall prepared them to kick things off with their students, which they did by reading Your Fantastic Elastic Brain and talking about brains as a learning muscle. The students heard that getting better at something means going for the sense of frustration that is inevitable when you’re moving up a learning curve.

Later, students would get the opportunity to learn that lesson at a deeper level. After building confidence as they passed the early, easiest levels of BrainWare, they would each find an area that was truly difficult for them. Joan found it fascinating to see some of her students easily complete levels she had struggled with and struggling with others.

Knowing that it was important that their students move around through the different games and taking to heart the admonition in their implementation webinar not to let students avoid the hardest games*, Susie and Joan had a timer running on their SmarBoard to help students switch games every ten minutes and came up with a chart that let the students plan and keep track of their own progress and. During each of their thrice-weekly sessions, students would pick one of the Key 5, and then ensure that they rotated through all the other games before repeating. The students used the program over 14 weeks, completing 30 or more sessions, the kind of usage that has been shown to drive substantial growth in cognitive skills.

A second cohort of students is using BrainWare SAFARI during the second half of the year. While the school won’t see the data on impact on student’s cognitive and academic skills until the end of the school year, a couple of things already apparent. First, the students started talking with each other outside of class … “How far did you get?” “Isn’t it fun?” The program became a real conversation piece. The other observation relates to the fact that the Curtis School offers an accelerated curriculum and serves high-level learners. As Dr. Fraser explains, many of those students haven’t experienced much in the way of frustration by the time they get to third grade. Giving students the experience of something where everyone gets challenged and learns to understand and tolerate frustration as a part of learning, has been, in her words, “incredibly helpful.”

Congratulations to all the third grade students at Curtis School for working hard at BrainWare SAFARI (and it’s ok if you think its fun!), and for learning that vital lesson – that challenge and frustration are essential in learning, and that persistence is key to accomplishing their goals.


Closing the Achievement Gaps: The Need for a Cognitive Intervention

March 29, 2014

Despite great effort, the achievement gaps in education persist. While some progress has been made increasing the percentage of students performing at grade level in reading and math, the national average is only about 35% for 3rd graders. That’s one big gap. And the gaps are even bigger for historically low-performing students – students who are economically disadvantaged, students with learning disabilities, and English Language Learners.

Here is what some recent research suggests about these populations and the potential to make dramatic, rather than incremental, strides in raising performance levels.

Economically Disadvantaged Students

The gap for economically disadvantaged students is not just an achievement gap; it is a cognitive gap. Low-SES (socioeconomic status) students have less well developed cognitive skills than their more advantaged counterparts. This impacts their ability to visualize and see patterns, to manage spatial relationships and sequence, to control the focus of their attention, to learn and understand words, to hold and manipulate information in the mind. These cognitive skills are essential in reading and math, in particular, and in being a successful and organized student, in general.

Consider the situation of two classes of 4th and 5th grade boys, low-SES, and with a history of behavior problems. The students were tested and shown to be performing, cognitively, 3 years behind their chronological age. Understanding that these students’ minds were functioning like those of 1st and 2nd graders, what would you predict for their academic performance (and their behavior) when challenged with 4th or 5th grade work? Twelve weeks later, following a cognitive intervention, these students were performing on average 3 years ahead of their chronological age. What would you predict now for their potential for academic performance?

Students with Learning Disabilities

The gap for a large portion of students in Special Education – those with learning disabilities – is also not just an achievement gap, but a cognitive gap. Working memory, short-term memory, attention, processing speed and similar cognitive functions are what stand in the way of making adequate academic progress for these students.

A group of students in 2nd through 4th grades, identified as having specific learning disabilities, were tested and shown to be performing cognitively at just above 60% proficiency, where 90% proficiency is the level expected of a normally developing student. These students were reading at about 28% proficiency and performed in math at about 45% proficiency. Twelve weeks later, the students who received a cognitive intervention were performing at 89% proficiency cognitively, 68% proficiency in reading, and 77% proficiency in math.

ELL Students

Cognitive processes play a role in language acquisition and the ability to function in a second language. Working memory, visualization, inhibitory control and cognitive flexibility are especially important.

ELL students who received a cognitive intervention in various studies accelerated gains in reading comprehension, performed better than students in a control group on state tests in reading and math, and performed better on measures of academic performance in reading, writing and math.

The cognitive intervention: BrainWare SAFARI

Learn more at www.MyBrainWare.com.