When Brain Training Works – Points of Controversy, by Betsy Hill and Roger Stark

August 23, 2016

Pre-publication publicity for a new book on the value of brain training claims that there are 5 conditions that make it effective.  While it surfaces some important considerations, it is likely to disappoint anyone who adheres strictly to the five conditions.

Here’s where the advice falls short:

  1. It must engage and exercise a core brain-based capacity or neural circuit identified to be relevant to real-life outcomes.

Response:  First of all, if there is a brain-based capacity or neural circuit that hasn’t been identified as relevant to real-life outcomes, then it probably doesn’t exist.  The purpose of our brain is survival, so all mental capacities are arguably relevant to real-life outcomes.  But more importantly, it is insufficient to say that training must target a mental process shown in research to be relevant to real-life performance.  The training should actually be able to demonstrate improvement in whatever that real-life performance is.   This is actually where much brain training falls down.  It’s not that the training doesn’t connect the exercise to a specific neural process, but that it can’t demonstrate actual change in real life application.

2.  It must target a performance bottleneck.

Response: The issue here is the model of brain functioning that underlies the statement.  A bottleneck is relevant for a linear process.  If step 2 of 10 in a manufacturing plant is slow, then that produces a “bottleneck.”  Speeding up step 2 will speed up the whole manufacturing process.  But our brains are not manufacturing processes.  Rather, they are complex systems with multiple processes occurring simultaneously (and hopefully in coordination).  In fact, recent research supports the idea that multiple mental processes are involved in just about everything we do and they have to work together.  While there is some truth to targeting weaker functions, it is at least as true that brain training, to be effective, is about integrating multiple systems.

3.  It requires a minimum “dose” of 15 hours total per targeted brain function performed over 8 weeks or less.

Response:  It’s refreshing, actually, to see a consensus emerging that a few minutes or hours of training here and there won’t do much for cognitive fitness.  But there is a fundamental flaw in the implication that each brain function must be trained independently.  If that were the case, then a training regimen of 150 hours would be required to address 10 targeted brain functions.  In our research, we have found that a dramatic impact on multiple brain functions is achieved in 35 to 50 hours of training multiple cognitive skill areas in an integrated fashion (using BrainWare SAFARI 3 to 5 times per week, in 30-45 minutes sessions over about 12 weeks).  We can agree that noticeable differences start to appear at the 6-8 week mark, but much more can be accomplished than this description of the book suggests.

4.  Training must adapt to performance, require effortful attention, and increase in difficulty.

Response:  This is all true, but it neglects what we know about what actually motivates effortful attention and persistence in training.  Parents and clinicians we talk to tell us, over and over, that most other brain training programs they have experienced are BORING.  Even when they are adaptive, increase in difficulty, and require focus (effortful attention).  Human beings don’t expend effortful attention when things are not engaging.  Students don’t care how much you know until they know how much you care.  The design of the training program needs to be motivational, engaging and reward, not just demand, persistence.

5.  Continued practice is required for continued benefits.

Response:  This condition suggests that one needs to continue training essentially forever.  First, we want to say, “Wrong,” but then we want to relent and acknowledge that, “It depends.”  It also requires that we consider what “practice” means.

When children complete a brain training program (which we think is better termed cognitive training), they bring their improved attention skills, working memory, or visual-spatial processing to an educational environment that, in most cases, continues to put demands on those very cognitive skills.  In other words, they are using and practicing those enhanced cognitive skills every day.

If you are an adult in the workplace, the same would be true, by and large.  You are in an environment where you “practice” your improved skills constantly.  After all, if they haven’t transferred to real life, what’s the point?  If your goal, as an adult, is not to perform better, but to be a “high functioning couch potato,” then that is another story altogether.

One situation where continued benefits may require ongoing training is for those who want to build cognitive reserve and/or mitigate the effects of the declining demands of everyday life as they age.  For many individuals who are not as active as they used to be in intellectually demanding activities, ongoing training makes sense.

The idea behind brain training is that getting skills to the level of automaticity so that they are used in real life, means that real life becomes the practice.  While continued training may be useful for some, the better the training, the better the transfer, the better the individual applies their stronger cognitive functions in everyday life, the more challenges they take on, the more problems they solve … and the less need they will have for ongoing training.

We welcome the opportunity to explore the fascinating topic of brain training – and everything we know and don’t know – with you.  Please comment or feel free to email us at bhill@mybrainware.com or rstark@mybrainware.com.


The Mystery of Reading Comprehension, by Betsy Hill

June 18, 2016

Many students can read a passage,but afterwards are unable to tell you what they read.  Or perhaps they can answer simple factual questions (regurgitate), but it really has no meaning for them and will be forgotten the next day.

How students make the leap from decoding to understanding is something that has challenged teachers since the very beginning of reading and writing (I don’t really have a reference for comprehension problems with the Dead Sea Scrolls, but I suspect that I’m not far off the truth).

And what is reading comprehension, anyway?

The way our minds comprehend what we hear or read is to connect what we are hearing or reading to knowledge and information we already know.  Regurgitating is not comprehending.  Regurgitation only involves short-term memory.  Our brains are designed to discard what is held in short-term memory if we haven’t found a way to make it meaningful.  So, of course, we can “read” but still not have understood a darn thing.

Comprehending involves making meaning, by visualizing and applying the information from the text being read, relating ideas to what is already known, and holding ideas in mind while we think about them.  But most reading instruction doesn’t address “visualizing”, or “holding ideas in mind.”  In fact, those mental processes are only two, although a very important two, of the cognitive skills (or mental processes) that must be working efficiently and accurately for comprehension to take place.

More importantly, these are the very skills that stand int he way of that leap to comprehension for many students.  It isn’t enough to hope that students will magically solve the mystery of comprehension themselves and make that leap.  Reading comprehension requires a mind prepared for that challenge.

Learn more at http://www.mybrainware.com/Skate-Kids-and-Ramps-to-Reading.

 


Five Tips for a Better Brain, by Betsy Hill

July 6, 2015

Just about every adult I meet wants to know how to strengthen their perception, thinking and acuity.  I believe in practicing what I preach, so here a five things I practice on a daily basis.

  1. Our brains become what brains do, so do wonderful, interesting and beautiful things.  When my youngest son went to college, the dean welcomed parents and shared with us some of the advice he was giving to our children in other meetings … That the mind is like your living room and that your job is to decorate it.  One thing we know is that what decorates our minds best is doing things that are challenging for us – not the just the same old comfortable things.  Sometime this summer, try something you’ve never done before.  BrainWare SAFARI is one great way to redecorate your mind.  If you haven’t tried it, what are you waiting for?
  2. Practice what is called abductive thinking.  You’ve probably heard of deductive thinking – the kind of thinking police detectives are supposed to do – that is drawing conclusions from multiple facts that point in the same direction.  It’s pretty much what happens when you conclude that there can’t be any other cause or reason for what you’re seeing.  You’ve probably heard of inductive thinking – predictive thinking based on a set of facts.  You have also probably engaged in both inductive and deductive reasoning.  But what about abductive thinking?  That is thinking that takes seemingly inconsistent facts and does not insist on choosing among then – but comes up with a brand new truth.  This is the kind of thinking that you need when you hear about the same incident from two different friends whose stories are very different.  What kind of overarching truth can you find that accounts for all of it?  Or consider how to compare things that you initially think have nothing in common … what do you think a triple-decker ice-cream cone has in common with a political campaign?
  3. While this may sound like hard to do, get enough sleep.  Adults with mild sleep deprivation (being awake for 19 hours) perform on cognitive tests like they were legally intoxicated.  Moreover, your brain actually solves problems and consolidates memory during sleep (during the REM cycle) – so an extra hour or two of sleep may make that problem you’ve been wrestling with easier to solve.  Physical exercise is also very important to brain health and stronger cognitive functioning, so get out and enjoy our beautiful summer weather.  Besides, it’ll tire you out so you’ll sleep better.
  4. Challenge your assumptions.  We all make assumptions all the time and we take information for granted.  When you listen to the news or a speaker at a conference, play devil’s advocate.  Think about what would have to be true for that point of view to be accurate?  Is it complete?  Does it jump too far from basic truths to a conclusion.  Ask yourself what evidence you have that it is true and what evidence you have that might tend to disprove it.  Think about the difference between evidence, opinions, and judgments.
  5. Whatever it is that seems like a puzzle, put it down on paper.  If you are a writer, write.  If you are most comfortable with visual images, draw a  mind map.  Writing is nature’s way of showing us how sloppy our thinking is (paraphrased from someone brilliant … but I haven’t been able to track down the source).  Putting things down on paper forces us to be much more specific about the relationships among things, particularly cause and effect relationships, and a mind map can help us keep a large amount of complex information in an order.  Draw a circle on a piece of paper with the main idea or question in the center.  Draw more circles and connect them to the first and so on.  Don’t forget the connections between the second- and third-order circles.  There is likely to be a new insight somewhere in that map.

There’s plenty of time between now and September to make one or more of these a new habit and have a great summer!


Deal with the Big Rocks First … Prioritizing — by Betsy Hill

May 27, 2014

This activity is one of several End Summer Brain Drain activities available at http://www.mybrainware.com/how-it-works/end-summer-brain-drain/

Have you ever noticed that some people just drift through life dealing with each problem as it comes along and then wonder where all the time has gone, and why they haven’t accomplished more?

Other people seem to live lives that are very well organized and are able to accomplish a great deal.

You can do this activity just by imagining it, but it will be even more memorable if you actually try this with your child.  Assemble a large jar, a pile of big rocks (ones that will fit through the mouth of the jar), a pile of medium-size rocks, a bunch of pebbles, some sand and some water.  Your job with your child is to get all of the rocks, pebbles, sand and water into the jar.

It is good to let your child experiment with different ways to do this, even if they decide they need to start over several times.  What your child will discover is that If they start with the sand and then add the pebbles and then the medium-size rocks, the jar will fill up before they can get to the big rocks.  But if they start with the big rocks, they can get them all in and the smaller items will fill in the spaces in between.

You can point out to your child that it’s the same with things in your life.  You can begin to take charge of your life a lot more if you take the time to decide what is most important to you.

It’s not that you have to decide once for all time.  What’s important can change from minute to minute, or at least from day to day.  But at a particular time, it’s good to know what is important and what isn’t.  That way, you can take care of the important things first and let the less important ones fill in the cracks.

One way to get started on prioritizing with your child is for you each to make a list of things in some category that you both enjoy or know about.  For example, you could make a list of your friends, books that you like, things around the house that you want to change, events that have happened in the past few weeks or that are expected to happen in the next few.

Try to get at least ten items on your list, but you can still do this if you have only three or four.

Once you each have your list, number the items in order of importance.

Then take turns telling each other why you have put them in that order.  What makes one thing more important than another?

If you and your child continue to practice prioritizing from time to time, referring back to your experiment with the jar and the rocks, you will probably find that it becomes a way to focus everyone’s attention on the important things.  Maybe next time, your child is worried about something trivial, all you will have to say is, “Is that one of the big rocks?”


Cognitive Skills Development in an Accelerated Curriculum – by Betsy Hill

April 10, 2014

Much of our work has dealt with helping struggling students — those who are behind or have identified cognitive deficits — but it is important to remember that very bright students can also benefit from developing their cognitive skills and executive functions.  Here’s a story that explains what this can look like:

Dr. Sara Fraser, a clinical psychologist and Director of Students Services at Curtis School in Los Angeles, California, had been following the literature on executive functions for some time before she encountered BrainWare SAFARI at a Leaning and the Brain Conference in 2012. What she had seen up until that point was not all that encouraging – training on working memory that didn’t seem to transfer beyond short-term memory. It was also labor-intensive and would require a pull-out approach in their school setting.

What appealed to Dr. Fraser about BrainWare SAFARI was that its video-game format would appeal to their students, that it was supported by research showing that the breadth of cognitive skills developed meant that they could expect to see transfer to academic tasks, and that it could be implemented by teachers within the classroom.

The next step was to bring some teachers into the process – enter Joan Cashel and Susie Sobul, two of Curtis School’s third-grade teachers. Following a webinar demonstration, both teachers used BrainWare SAFARI themselves over the summer, with Joan finishing all but a few levels (we’re impressed!). An implementation webinar in the fall prepared them to kick things off with their students, which they did by reading Your Fantastic Elastic Brain and talking about brains as a learning muscle. The students heard that getting better at something means going for the sense of frustration that is inevitable when you’re moving up a learning curve.

Later, students would get the opportunity to learn that lesson at a deeper level. After building confidence as they passed the early, easiest levels of BrainWare, they would each find an area that was truly difficult for them. Joan found it fascinating to see some of her students easily complete levels she had struggled with and struggling with others.

Knowing that it was important that their students move around through the different games and taking to heart the admonition in their implementation webinar not to let students avoid the hardest games*, Susie and Joan had a timer running on their SmarBoard to help students switch games every ten minutes and came up with a chart that let the students plan and keep track of their own progress and. During each of their thrice-weekly sessions, students would pick one of the Key 5, and then ensure that they rotated through all the other games before repeating. The students used the program over 14 weeks, completing 30 or more sessions, the kind of usage that has been shown to drive substantial growth in cognitive skills.

A second cohort of students is using BrainWare SAFARI during the second half of the year. While the school won’t see the data on impact on student’s cognitive and academic skills until the end of the school year, a couple of things already apparent. First, the students started talking with each other outside of class … “How far did you get?” “Isn’t it fun?” The program became a real conversation piece. The other observation relates to the fact that the Curtis School offers an accelerated curriculum and serves high-level learners. As Dr. Fraser explains, many of those students haven’t experienced much in the way of frustration by the time they get to third grade. Giving students the experience of something where everyone gets challenged and learns to understand and tolerate frustration as a part of learning, has been, in her words, “incredibly helpful.”

Congratulations to all the third grade students at Curtis School for working hard at BrainWare SAFARI (and it’s ok if you think its fun!), and for learning that vital lesson – that challenge and frustration are essential in learning, and that persistence is key to accomplishing their goals.


Closing the Achievement Gaps: The Need for a Cognitive Intervention

March 29, 2014

Despite great effort, the achievement gaps in education persist. While some progress has been made increasing the percentage of students performing at grade level in reading and math, the national average is only about 35% for 3rd graders. That’s one big gap. And the gaps are even bigger for historically low-performing students – students who are economically disadvantaged, students with learning disabilities, and English Language Learners.

Here is what some recent research suggests about these populations and the potential to make dramatic, rather than incremental, strides in raising performance levels.

Economically Disadvantaged Students

The gap for economically disadvantaged students is not just an achievement gap; it is a cognitive gap. Low-SES (socioeconomic status) students have less well developed cognitive skills than their more advantaged counterparts. This impacts their ability to visualize and see patterns, to manage spatial relationships and sequence, to control the focus of their attention, to learn and understand words, to hold and manipulate information in the mind. These cognitive skills are essential in reading and math, in particular, and in being a successful and organized student, in general.

Consider the situation of two classes of 4th and 5th grade boys, low-SES, and with a history of behavior problems. The students were tested and shown to be performing, cognitively, 3 years behind their chronological age. Understanding that these students’ minds were functioning like those of 1st and 2nd graders, what would you predict for their academic performance (and their behavior) when challenged with 4th or 5th grade work? Twelve weeks later, following a cognitive intervention, these students were performing on average 3 years ahead of their chronological age. What would you predict now for their potential for academic performance?

Students with Learning Disabilities

The gap for a large portion of students in Special Education – those with learning disabilities – is also not just an achievement gap, but a cognitive gap. Working memory, short-term memory, attention, processing speed and similar cognitive functions are what stand in the way of making adequate academic progress for these students.

A group of students in 2nd through 4th grades, identified as having specific learning disabilities, were tested and shown to be performing cognitively at just above 60% proficiency, where 90% proficiency is the level expected of a normally developing student. These students were reading at about 28% proficiency and performed in math at about 45% proficiency. Twelve weeks later, the students who received a cognitive intervention were performing at 89% proficiency cognitively, 68% proficiency in reading, and 77% proficiency in math.

ELL Students

Cognitive processes play a role in language acquisition and the ability to function in a second language. Working memory, visualization, inhibitory control and cognitive flexibility are especially important.

ELL students who received a cognitive intervention in various studies accelerated gains in reading comprehension, performed better than students in a control group on state tests in reading and math, and performed better on measures of academic performance in reading, writing and math.

The cognitive intervention: BrainWare SAFARI

Learn more at www.MyBrainWare.com.

 


Thoughts on the Value of President Obama’s BRAIN Initiative – by The BrainWare SAFARI Team

April 13, 2013

The BRAIN Initiative announced recently by President Barack Obama has underscored the importance of better understanding brain-behavior relationships and it holds potential for deeper knowledge of the mechanisms involved in the development of the cognitive skills involved in learning and thinking.

President Barack Obama this week announced that his 2014 budget proposal will contain $100 million in funding for a research initiative with the acronym BRAIN (Brain Research through Advancing Innovative Neurotechnologies), a 10-year $3 billion initiative previewed in the President’s State of the Union Address.  The purpose of BRAIN is to develop technologies to expand our understanding of how brain cells (neurons) interact to produce thought and learning.

Here are some of our thoughts:

Betsy Hill, President & COO, BrainWare SAFARI:  The BRAIN initiative has been likened to the Human Genome mapping project, but there are some important differences.  The order of proteins in the human genome can be determined and will be the same the next time you look at it.  There is a basic sequence that applies to all of us.  The principle of neuroplasticity means that the organization of our brains – the neural networks that account for learning and thought – are unique and constantly changing.  Our brains literally construct themselves.  In fact, the creation and strengthening of neural networks is the definition of learning.  It is vital that we learn more about how the brain processes, uses, stores, and retrieves such enormous quantities of information.

Roger Stark, CEO, BrainWare SAFARI:  A key to technological exploration of brain-behavior relationships will likely be the use of tools and techniques that have already been developed to impact brain function and behaviors, such as attention, working memory, visual-spatial processing, auditory processing and the integration of cognitive functions.  BrainWare SAFARI cognitive skills development software is just such a tool and has been shown in research and clinical practice to develop brain processes that enable us to take in, store, retrieve and manipulate information, the very processes the BRAIN initiative is designed to explore.  The BRAIN initiative could help explain in a much more detailed way than is currently available to exactly how key cognitive processes involved in learning and memory are developed and modified, leading to even better approaches.

Dr. Sara Sawtelle, Director of Scientific Affairs, BrainWare SAFARI:  We know that the brain develops in interaction with our environment.  BrainWare Safari helps the brain interact with the environment (in this case a software program, in a video-game format) in a way that develops cognitive processes critical for learning and thinking.  This could be a valuable tool in helping researchers working in the BRAIN initiative to examine how the brain develops and uses these key processes.  We look forward to collaborating with researchers on this exciting initiative with so much promise for our entire society.

What are your thoughts about the President’s BRAIN initiative?